Magnetic Clustering Effect during the Association of Biofunctionalized Magnetic Nanoparticles with Biomarkers
نویسندگان
چکیده
We report herein an investigation into dynamic magnetic clustering that occurs during immunoassays as biofunctionalized magnetic nanoparticles (BMNs) become associated with biotargets. We measure the dynamic effective relaxation time τeff(t) and use scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to investigate the C-reactive protein (CRP) as it associates with the BMN Fe3O4-antiCRP to form the magnetic cluster Fe3O4-antiCRP-CRP. The results indicate that τeff(t) increases with increasing association time. In addition, the ration Δτeff/τ0 as a function of CRP concentration follows a characteristic logistic function, which provides a basis for estimating the quantity of biomolecules with a detection sensitivity close to 0.1 ppm. After the association, SEM and TEM images show that CRP and Fe3O4-antiCRP conjugate to form Fe3O4-antiCRP-CRP clusters hundreds of nanometers in size. The SEM and TEM images provide direct evidence of the formation of magnetic clustering.
منابع مشابه
Size Reproducibility of Gadolinium Oxide Based Nanomagnetic Particles for Cellular Magnetic Resonance Imaging: Effects of Functionalization, Chemisorption and Reaction Conditions
We developed biofunctionalized nanoparticles with magnetic properties by immobalizing diethyle-neglycol (DEG) on Gd2O3, and PEGilation of small particulate gadolinium oxide (SPGO) with two me-thoxy-polyethyleneglycol-silane (mPEG-Silane 550 and 2000 Da) using a new supervised polyol route, described recently. In conjunction to the previous study to achieve a high quality synthesis and increase ...
متن کاملSize Reproducibility of Gadolinium Oxide Based Nanomagnetic Particles for Cellular Magnetic Resonance Imaging: Effects of Functionalization, Chemisorption and Reaction Conditions
We developed biofunctionalized nanoparticles with magnetic properties by immobalizing diethyle-neglycol (DEG) on Gd2O3, and PEGilation of small particulate gadolinium oxide (SPGO) with two me-thoxy-polyethyleneglycol-silane (mPEG-Silane 550 and 2000 Da) using a new supervised polyol route, described recently. In conjunction to the previous study to achieve a high quality synthesis and increase ...
متن کاملStudy on Fe3O4 Magnetic Nanoparticles Size Effect on Temperature Distribution of Tumor in Hyperthermia: A Finite Element Method
In recent years, Hyperthermia has been used as an emerging technique for cancer treatment, especially for localized tumors. One of the promising cancer treatment approaches is magnetic nanoparticle (MNPs) Hyperthermia. In this theoretical work, the temperature distribution of a common tumor over the different sizes of Fe3O4 magnetic nanoparticles, namely 25, 50, 100, and 200 nm, was stud...
متن کاملAn investigation of the effect of hyperthermia using iron and magnetic nanoparticles in cancer treatment
Introduction: hyperthermia using different methods such as microwave and magnetic waves is one of the methods to treat cancer. In this method, iron and magnetic nanoparticles are used to increase the temperature and increase the effect of hyperthermia as auxiliary treatment with chemotherapy and radiotherapy. In this study, the role of iron and magnetic nanoparticles have been ...
متن کاملHydrothermal Synthesis of Fe3O4 Nanoparticles and Flame Resistance Magnetic Poly styrene Nanocomposite
Fe3O4 nanostructures were synthesized via a facile hydrothermal reaction. The effect of various surfactants such as cationic and anionic on the morphology of the product was investigated. Magnetic nanoparticles were added to poly styrene for preparation of magnetic nanocomposite. Nanostructures were then characterized using X-ray diffraction, scanning electron microscopy and Fourier transform i...
متن کامل